fantastic fourier series

0 Conversations

Warning - semi-unpalatable mathematics here.
Little header, integrals are with respect to t and are represented with Heaviside's Big D notation.

Fourier series are really nifty. Take any function f(x) and it can be represented in an infinite series of sines and cosines. How do we do it? We generate two series, one the coefficients of sines, the other, the coefficients of cosines. Call the former a set of coefficients S, the latter, the set C. Call the kth element of S S_k, the kth element of C C_k.
Fourier series work in a specific interval [-l,l], and sometimes in [-inf,inf]

Then:
C_0/2+C_1*cos((pi*x)/l)+S_1*sin((pi*x)/l)+C_2*cos((2*pi*x)/l)+S_2*sin((pi*x)/l)+C_3*cos((3*pi*x)/l)+...
The above can probably better be represented with sigma notation but hey, I'm no magician.

Anyhow, how do we create these two sets? We use:
C_k=1/l*D^(-1)(f(t)*cos((k*pi*t)/l))
S_k=1/l*D^(-1)(f(t)*sin((k*pi*t)/l))

Great, I hear you say, but the only thing is: for complicated functions these integrals get *messy*. So if you want to tinker with some fourier series then start easy! And have fun. Yes. Math is fun!

Bookmark on your Personal Space


Conversations About This Entry

There are no Conversations for this Entry

Entry

A719255

Infinite Improbability Drive

Infinite Improbability Drive

Read a random Edited Entry


Written and Edited by

Disclaimer

h2g2 is created by h2g2's users, who are members of the public. The views expressed are theirs and unless specifically stated are not those of the Not Panicking Ltd. Unlike Edited Entries, Entries have not been checked by an Editor. If you consider any Entry to be in breach of the site's House Rules, please register a complaint. For any other comments, please visit the Feedback page.

Write an Entry

"The Hitchhiker's Guide to the Galaxy is a wholly remarkable book. It has been compiled and recompiled many times and under many different editorships. It contains contributions from countless numbers of travellers and researchers."

Write an entry
Read more